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Abstract. This paper shows some preliminary results about the performance of
an estimation of distribution algorithm of easy implementation but effective to
solve optimization problems. Computer simulation compares Evonorm versus
Evolution Strategies to optimize complex functions. The results show a better
efficiency and easy implementation than Evolution Strategies in the optimiza-
tion of De Jong functions.

1 Introduction

There is a new tendency to generate simplified versions of evolutionary algorithms
where crossover and mutation procedures are replaced. The population is built by a
model that represents an estimation of distributions of the best individuals selected.
Evonorm is a new evolutionary algorithm where the population is built by random
variables with normal distribution. The parameters of these random variables are
determined by the calculation of the mean and the standard deviation of selected
population of solutions. The evolutionary algorithm replaces the crossover and the
mutation procedure with new procedures to calculate parameters of random variables
and to generate new individuals from these random variables with normal distribu-
tion.

Evonorm is an easy and effective way to apply estimation of distribution algo-
rithms (EDAs). Evonorm can be used to find the decision variables that optimize a
given function. There are several approaches to apply EDAs and can be classified in
two classes, discrete and continuous. Examples of discrete EDAs are PBIL [1],
UMDA [2], and CGA [3]. Examples of continuous EDAs are UMDACc [4] and IDEA
[5]. In every class there are two subclasses, EDAS that consider a dependences be-
tween decision variables like BOA [6], hBOA[7], and eCGA[8], and EDAs that con-
sider a independencies between variables. In continuous EDAs there is the same sub
classification [9].

EDAs replace the use of crossover and mutation mechanism so it is expected a
simplification in the implementation of an EDA, but in some of them it implies the
use of high cost search mechanism to get an effective model to estimate the distribu-
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tion of individuals selected in order to generate a new population. It is like a new
low-level optimization problem into high-level optimization problem. Some experi-
ments have shown the efficient of EDAs versus another evolutionary algorithms and
the conclusion is the same, the EDAs requires more computational time and do not
improve significantly the solutions found [10]. Evonorm can be effective founding
good solutions but without the use of complex search mechanism to estimate distribu-
tions.

The present section is the introduction. The second section is an introduction of
EvoNorm. The third section shows the performance of EvoNorm versus Evolution
strategies ( 44, A) to make comparison between them optimizing De Jong Functions.

The conclusion and future work is given in section fourth.

2  EVOlutionary Algorithm of Random Variables with NORMal
Distributions (Evonorm)

Evonorm uses random variables with normal distribution. The normal distribution
function is a random variable and describes many random phenomena that occur in
every day life. It is simulated the normal distribution function with two parameters,
the first is the mean and it is a numeric measure of the central tendency of the random
variable. The second parameter is the standard deviation and it is a measure of the
dispersion of a variable around the mean. A normal distribution function can be used
to represent a set of possible values of a decision variable, so it is necessary to use a
set of parameters (mean and standard deviation) of the normal distribution function
per decision variable. Equation 1 shows an easy implementation of a random variable
with a normal distribution.

N(u,0)=pu+oy. U (1)

Where: £ is the mean, & is the standard deviation, and U is a uniform random

number generator. The Evonorm procedure has the same philosophy of an evolution-
ary algorithm because there are an evaluation process, a selection, and a variation
procedure where the crossover and mutation are substituted by new procedures, the
calculation of the parameters of the normal distribution functions per decision vari-
able and the generation of a new population.

In continuous optimization a vector of real numbers can represent continuous de-
cision variables. It is used a random variable per decision one. EvoNorm evolves the
random variables to generate new real vectors of decision variables. These variables
will be evaluated and the best of them will be selected to calculate new parameters of
the distribution function to generate a new population. The process is repeated again
and again (Table I). The calculation of the mean and standard deviation is a common
known arithmetic procedure (2, 3)
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p(pr)=2 PS(pr.i)/n @

o(pr) =13 (PS(pr.i) - u(pr)’ G

Where pr represents the decision variables involved, and PS represents the se-

lected individuals. # represents the number of individuals selected. PS is a matrix

of NT Pr columns and NTR rows both constants represents the total of parameters
and individuals respectively.

Table 1. Seudocode of evonorm

1) Generation of a uniform random popula-
tion P of size m.

2) Evaluation of the m individuals.

3) Selection of the best n individuals
(n<m)

4) Calculation of mean and standard de-
viation from n selected individuals.

5) Modify standard deviation if intensive
exploration is active.

6) Generation of a new population of size
m from random variables with parame-
ters calculated in (4) and (5)

7) If a criterion satisfied then end else
go to step (2)

EVONORM is similar to UMDACc because uses random variables that generate
numbers with Gaussian distribution. The parameters of these random variables are
calculated from the population selected too. Evonorm searches the appropriate pa-
rameters of the normal distribution to improve the random variables associated.

Evonorm consider an intensive exploration phase because some functions are dif-
ficult to optimize. In this phase it is used a constant standard deviation equivalent to
the half of the range of a decision variable and it is used on a half of the total genera-
tions of Evonorm. Some functions do not require the intensive exploration phase,
nevertheless the use of this procedure improve lightly the performance of the search
in these functions.

The exploration is implemented by a simple condition: If the generation counter is
below of the 50 percent of the total generations then the standard deviation is equal to
the half of the range of the decision variable (to get a very intensive exploration) else
Evonorm uses the standard deviation calculated from the selected population. The
calculated mean is always used.
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3  Performance Comparisons between Evonorm and Evolution
Strategies

It is analyzed the performance of Evonorm and Evolution Strategies (4, A) without

recombination [11] on classic test De Jong functions [12, 13]. These functions take
care to include continuity, discontinuity, convex, nonconvex, unimodal, multimodal,
quadratic, non quadratic, low dimensional, high dimensional, stochastic and determi-
nistic characteristics (4 to 8)

The exploration is applied during the 50 percent of the total generations at the begin-
ning of the run. Table II shows the Evonorm parameters used to optimize every func-
tion. Evolution Strategies was adjusted to get the same number of evaluations. The
average performance of both algorithms in 100 runs to optimize all De Jong functions
are shown from figure 1 to figure 5.

De Jong function 1

3
fX)=>x )
i=1
Where —5.12<x, <5.12
De Jong function 2

F(X)=100(x; —x,)+(1—-x,)° )
Where —2.048 < x, < 2.048

De Jong function 3

s
J(X) =Y int(x,) (©)
i=1
Where —5.12<x, <5.12

De Jong function 4

30
f(X)= Z:ixl.4 + gauss(0,1) (7)
i=1
Where —1.28 < x, <1.28

De Jong function 5

fo=— ®)

K+ f7(x1,x2)
J=
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2
Where f(xl,x2)=c, + Z(xi - ay.)(’

i=1

Where —65.536 <x, <65.536, K =500, ¢; =Jj,and

(] =32 -16 0 16 32 -32 -16 .. 0 16 32
a.|l=
Y -32 -32 -32 -32 -32 -32 -16 .. 32 32 32

Table 2. Evonorm parameters used to optimize every De Jong function
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De Jong 1 DelJong2 Delong3 Delong4 Delong5

Generations 50 100 50 100 150
Total of indi- 25 50 50 50 200
viduals
Individuals 5 10 10 10 40
selected
Use gxplora— Not Yes not not Yes
tion
Perfarmance of both algarithms on De Jong Function 1
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Figure 1. Performance of the algorithms to optimize De Jong function 1.
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Performance of both algorithms on De Jong Function 2
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Figure 2. Performance of the algorithms to optimize De Jong function 2.

Petfarmance of both algorithms on De Jong Function 3
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Figure 3. Performance of the algorithms to optimize De Jong function 3.
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Performance of both algorithms on De Jong Function 4
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Figure 4. Performance of the algorithms to optimize De Jong function 4.
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Figure 5. Performance of the algorithms to optimize De Jong function 5.
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4 Conclusions

The performance of Evonorm is superior to evolution strategies in De Jong functions
1, 3 and 4. In other functions 2 and 5 the performance is very similar in both algo-
rithms. It is important to mention the use of exploration in these test functions. There
is an open opportunity to improve this algorithm because it is necessary to test
Evonorm with and without exploration. The Evonorm is effective to optimize De
Jong functions and the implementation of the algorithm is easy because the calcula-
tion of mean and standard deviation involve common used arithmetic operations.
Evonorm is an evolutionary algorithm for continuous optimization based in estima-
tion of parameters of random variables with normal distribution functions. The pa-
rameters are calculated from a set of selected individuals. The algorithm shows a
good performance with the comparison again Evolution Strategies. The future work
includes new test functions and comparisons with similar evolutionary algorithms for
continuous optimization and makes the algorithm more independent to the problem. It
is supposed an independent interaction between variables so will be important to may
use multivariable normal distribution functions and different distribution functions
not only the normal one. It is expected to extend the use of Evonorm in multimodal,
constrain satisfaction and multi objective optimization.
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